ON THE THEORY OF LONG WAVES*

M. A. Lavrent'ev UDC 232.5.031

A new method of studying plane steady wave motion of a gravity fluid is elucidated in this
paper. This method succeeds in establishing the existence of a solitary wave, for example,
and in giving the first complete foundation for the approximate Rayleigh theory {1}, which
concerns the theory of finite-amplitude long waves. Underlying the method are general
boundary properties of univalent functions, used earlier by the author to construct a qual-
itative theory of jet fluid motions [2].

1. FORMULATION OF THE PROBLEM

As is known, the problem of the steady wave motion of a gravity fluid in a channel of variable depth
reduces to such a boundary-value problem of conformal mapping theory: Let a line T'j:y = y,(x), where the
function y, (x) is single-valued and continuous, together with its two derivatives for all values of x be given
in the plane of the complex variable z = x + iy. Find the line I't y = y (x), y (X) > y, (x) such that for the con-
formal mapping ¢ = f(z, Ty, I), &£ =& + in of the domain D (T, T') bounded by T’y and T, the relationship

I(To,D)=If"(zT)P’—~ C+Ay=0, (1)

would hold in the strip v< 7 <h, f(#, Ty, ') = = along the line T', where C and A are given constants.
Hydrodynamically, the function f denotes the complex potential of a moving fluid, and the number h is the
discharge, while (1) corresponds to a constant pressure on the free surface. If y,(x) = const, then by im-
posing certain conditions on a motion with the potential f we obtain wave motion in a channel of finite depth
with zero transverse fluid velocity. '

Henceforth, let us limit ourselves to consideration of the case when h is sufficiently small and when
the quantities (1/h)|y, ()"0, (1/h)|y(x)—h| together with the first three derivatives, as well as |C—¢],:
IA —(2/h)], are small together with h. In conformity with this, let us set up some relationships concerning
the conformal mapping of the domains D (I'y, I') close to the strip 0<y < h onto the strip 0 <% <h,

*The variational methods of conformal mapping developed by M. A. Lavrent'ev (the M. A. Lavrent'ev con-
gruence theorems) have been applied richly in the papers of Mikhail Alekseev himself, his pupils, and fol-
lowers in the theory of quasiconformal mapping, in problems of hydrodynamics with free boundaries, in fil-
tration theory, in numerical methods of solving applied problems, and other branches of mathematics and
mechanics. The survey of the results obtained here and references to appropriate papers can be found in
[3, 4], for example. The translation from Ukrainian of a similarly titled paper of M. A. Lavrent'ev ([5]
{1947)) is the first Russian publication of the complete proof of the classical theorem on the existence of a
solitary wave announced by the author in 1943 in Doklady Akademii Nauk SSSR [6]. This article was trans-
lated by M.P.Shcherbyakand edited by V. N. Monakhov.
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2, AUXILIARY FORMULAS

Let zy = x{ + iy; be an arbitrary point on the line T'. Let us draw a circle C tangent to I' through z;
and a normal T to I" to intersect the line T'; at the point zy, for instance; let us draw a circle C tangent to

Ty through the point z;. The domain bounded by Cy and C will be denoted by &, . Let us map conforma; §7” )

;:f(z! Zl)

the domainll21 onto the strip 0 <7 < h under the condition that the vertices of the crescent A zy Would go
over into the points e,

We obtain

I (22l =

1 aoo A ‘ | 5 ., .0 1.,
= { —g =Y T W~ ~ Y — Yy 7‘73'.1!0“]—:~r,, @

where
r=r(Yo ¥ Y ¥ Yy ¥")

is a function such that the expansion of the function r (* yy, ty, ty(',, ...} in t starts with the third power of t.

For sufficient smoothness of the lines Ty, T the quantity |f '(ry, z)| will yield an approximate value
for |f 'z, Ty, I)]. Let us find the estimate and properties of the remainder term of this approximation.
Henceforth, for simplicity in the writing, let us agree k and 6 denote quentities which remain bounded as the
appropriate parameters, particularly h, tend to zero. Let @4(x) and ¢ (x) denote, respectively, the dif-
ferences between ordinates of the points Cy, Tyjand C, T'; where this difference is not defined, we con-
sider the functions @, and ¢ to be given so that they remain continuous. Let us define the lines I'y(7) and
T (7) by the equations

y=yo(z) + To(z)=o(2, 17);
y=y(r) — r¢(r)=olx,7)..
Letting V(7) denote the absolute value of the derivative of the function ¢ = f[z, Ty (1), I'(7)] at the point z,,

which realizes the conformal mapping of the domain D [T’y (7), I (T)]into the strip 0 <7 < h under the condi~
tion of correspondence of the infinitely remote points, we will have {2]

. oo foel
1 q V=2 5‘ i15. To (0.0 (@) ¢ (a)cosarg /de , m { 1# [z, Ty (v), T (1)) @ () cos arg jde
md g I TET T 7 NN ' (3)
—e k¥ =5 —o ch? 5 ==

where z is a point of I'(T) which corresponds to a point t of the upper boundary of the strip under the map-
ping noted, and £; corresponds to z;. Hence, setting

1
e )= {If' (z,T,(0), T (¥) @ (z)cosarg f'dt, =T (1), -

- O

@ () = VI (2, To(¥), T (1)l qo () cos arg F'dt, = Ty (x)s
)

we have

(2 (p (yar ; jg _Qolt)dt
o *

An..l—r; 1 — ¢t
—oc sh? -
2

2
3=
il
..~] ,4

)
sl

ch? —
2

h

from which we obtain the following form for the remainder ferm R:
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y ., T kg @—0 a1 (ke (8 — 1)t
R =log|i" (2, To, T)| — log|f’ (21, 20| = | -(E“‘Tj—_—,“;jn—l’«“—?:;

ch? 5 ——

Yo gh
—o sk 2 A 2k

or noting that

©(2) =y (1) —y(x) — ¥ (£) (x — 1) — "é;“y” (r)(x— 2, -0y Pa" — 1),

o (%) =Yy (4) —y ',k-ll‘lo')jl — Y [‘I(lo)i (& — ;) — 5 Y i»l‘(‘b)) (x —z) = 8 ly Pz —xy)?,

we have

|R} <k {max 9| — max 5[} A

3. WAVES ON AN ARBITRARY BOTTOM AND RAYLEIGH WAVES

Turning to steady wave motions, let us set the value

Y. T PR k) I "
I (2. Ty D = 2202 (1 2y )

in the first approximation in relationship (1); then we obtain

B\t 2N
(y—y.,) (‘1 R )_'C "y

or disearding higher-order infinitesimals

2

he—N20, 2 . YoVl 5
e I I R

Hence

yy”ﬁ———f~3ﬂ-—(}—(”—“)'#% C -

(6"

(6")

Let us select the values of the constants so that the maximum of @(y) is reached at the point y = h and

the spacing between the positive roots of ¢ (y) would be on the order of h?; then

, 30 9
CW=m Y- v

Hence, setting y = h, we obtain

20 — 3kh =0.

relationship to determine C and A:

Fig. 1 S Gy & ey gy )

(7

Now if it is assumed that one of the roots of @(y) equals h? + h, then we obtain another

(1
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From (7) and (7') we obtain

1
L — 3% - 203

b
il
,:-' [N

or retaining the principal terms, we further obtain

| o

A=

C

+- 6k

-+ 9n2, ®

QJk._

u

Let us note some properties of the function ¥ = (l/y) ¢(y) for the values of A and C taken,

The zeros y; and y, of the function ¥ are
Ypo=h + 0¥ - 0K, (9)
The function ¥ is positive in the inferval y; < y < y, and at the point
Yo==h - O3
reaches a maximum equal to
Pmax = ¥ () = 5 b + B2,

Outside the interval y; = y = y, the function ¥ is negative for y > 0 and convex from the left; it is convex
from the right for y < 3h/2. For h/4 <y < 5h/4,

and, moreover,
B (= Ok = T -
It will henceforth be convenient to give (6') another form. To do this we set

vi(@)=ylx) — yolx)
and replace the function y, (x) by the function

Nof7) =yolr) — v.

The relationship (6) becomes

N S
(‘yl L) (1 - ”3‘.1/1!/1) =C —h{y v+ (10)

The equation obtained is equivalent to (6) to the accuracy of infinitesimals of order higher than h® be-

cause of the estimates for ¥ ' and #". Substituting their expression (8) in place of C and A in (10), and
replacing the right side by a quadratic term, we obtain

P 9 12 3 9 | 2
v=ghs =Ry (b 5] = v, (11)

For n = v = 0 we call the integral curve of (11) a Rayleigh wave [1].
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4, PROPERTIES OF A RAYLEIGH WAVE

Setting 1 = v = 0, we obtain

” ()

' ¢ 9 2
Y = h— gy — R (11

The first integral will be

(%)2 == Qhy — hls (y —h)* -+ 94, A= const. (12)

Let us study the change in the integrals of (11') which reach a maximum at x = 0 depending on the initial
ordinate y(0) =h + &, ¢ > 0,

The maximum condition yields

B b — 2 4 A =0,

from which

A=§‘—,;h'-* — ha. (12"

Let us find the value y, y * h + @ for which dy/dx = 0. We have

1 ” 3
hy——%(y-—h)"—-ka—h“—i—g;l—azo,

which yields after dividing by y—h—«

(y — h)? + oy — k) + (a*— 3h%)=0

or
3 T
y=h-+a, (a)=h—%+]—2-]/4h4—az. (13)

Hence, we see that the greatest value of a, for which we obtain a wave equals 2h?, Moreover, it is evident
that for o infinitely close to h® the integral curve will be close to the line y = h + h?, which means that the
plus sign should be taken in (13).

From the calculations presented and directly from the form of (11') we have the result that for each
value of a

—nLa< 2h?

there exists an integral curve y = Y (x, @) of (11') which has a maximum for x = 0 and has the finite period
2 (@)

Y(z + 20(a), a)=Y(z, a),

and, furthermore, it is evident that

Y(—z, o)=Yz, a).
The period 2w is determined by integrating (12),

hta
h3/2
W=

d= , (14)A
¥V 3ht(z—a)—(3-—a3)

13

htay(a)
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where

o, (@) = —‘—c_f-— -- 1/,73]”4114 — o
It is seen from the expression obtained for @ that for & — h? the half-period « tends to ®Vh/3
lim o (o) = & .‘,‘h,
a-rh? 2

where « increases as @ rises and @ tends to> as o — _Zh_z, the integral curve will achieve a single maxi-
mum for o = 2h? and the line y = h—h? will be the asymptote of this curve. The curve y =Y (x, 2h% yields
an approximate profile of a "solitary wave."

Let us find the asymptotic expression for « (&) for values of a close to 2h?, To do this, let us repre-
sent w as

%
3

ds
b x—2 (s —a)){s—a,) ?

1

13

I -
1
A

Ne

® (a)» =

1

where @, = @, (@) is determined from (13) and the minus sign must be taken in front of the radical.

Let us set

a_als'—ga—‘—,,?-]/é}z_f':-?=26,
a;—a,=V3}" A —at=e8,2=5t;
then

i
3251 at _ B2
¥3 L VA—ju—e—0 Ve

]_ (15)

3| -

() = [log -j— — 4 — Belog

Instead of the variable ¢, let us introduce the variable 7,

a=2h* — Th%;

then we will have for small 7

Finally,

T B 3_-

Starting from the relationships (11", (12), and (12"), the following estimates can be obtained for the
slope and curvature of the Rayleigh wave for any values of |x| < w(a):

3 3=

Y (2, @) < e 'E, (16)

3x
Y7 (r.m) < khe ',

{5y

Y (2, 2) < Ke 'F

The first of the estimates justifies the fact that the term containing y' has been discarded in going
from (2) to (6), since this term is on the order of h® in conformity with (186).
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Let us turn to the general equation (11) and let us establish the following property of its integrals.
Let y = z(x) be an integral of (11), Z(0) =h + a, Z(—x) = Z (x), Z (x + 2w) = 7 (x) for v = 0 and for 1 = 7(x),
7 4(=x) =My (x), My (x + 2w) =1y (x) |14 (x)| < Bh3, and let the function ” =7 (x) be such that the integral of (11)
agrees with 7 (x). Let Z (x) denote an integral of (11) for 7 =7 (x)—A, where A = const so that 7, (0) =h + a,
7'0) = 0.1, '

LEMMA 1. If 2h’~0a and B are sufficiently small, then for x < w (o) the difference
82=27,(z) — Z(z)
has the very same signasA and |6Z| grow, where x = kvh
182> 5.
Proof. Because of the continuity of the integral as a function of the parameters of the equation, it is
sufficient to examine the case when & = 2h? and 7, (x) = 0. Hence, let Z go over into Y (x, @) and Z; into

Y, (x4, @). Noting this, let us first consider a particular case of (11):

. 34
TR

n_ 9

9
V=h —5my — R (11m).

Let us hence assume that A= 0 for 2h?> YZ 7y, and A=A for lesser values of y. Let us consider the inte-
gral y =y (x) of this equation under the initial data

Y(zg)=Y (z,, 20%),
Y2 =Y"(z,, 2h%),
where x, is determined from the equation Y (x5, 2h?) = y,.
Let
r=1(y),
r=1(y)

be functions inverse to the functions y = Y (x, 2h) and y = y (x), respectively. In conformity with (11", (11"),
and the initial conditions, we obtain

Loles

Yo

y
V3) (—h+h)VE2m—y Ve
Yo !,!." Y
- dy j dy 27A5 Yo — }
1—‘81 p———t - T T : dy.
S7A / h3
v ]/U-l-—h?(y—yo) v ) v

Therefore,

be=1z—2z=Fk"A S —y"——h——ﬂ——gdy.
YT (g - nep (2t — )
Noting that
yx) — Yz, 200)= Y'(x, 21?6z,

and introducing the new variable u,

y=h-+2hR* — R*u?,
Yo=h+2h2—h2u,,
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we find

2
— uy

- 2 kA o u?
6.1/:!/(1')‘—)’(1‘,211' =-hé(3——u2)u' Smdu,
[

where k is a numerical constant, 0 < u, < u < V3. Differentiating the last relation with respect to u, we find

[ “
2 2
u® — ug 1

2 a
d kA ) UT— u
(3 — u?)*u? J

Eéy:-h— T — 2(2u° — Ju Y

Ug

The right side of this latter equation is explicitly positive for u® < 3/2; it can be seen by direct substitution
that this holds for all uy and u, 0 < uy < u < V3. This means that the variation 8y increases. Moreover, cal-
culations carried out show that for x, = 0 and values of x on the order of Vh the variation &y is on the order
of A/h. :

Forming a variational equation from (11), we obtain the following differential equation for dy:

, 9 . . 3A
8" = — 7 (Y — )by + 35,
A=0for r<z, and —A‘:A for x> x,.

From the monotonicity of 6y proved above for any x, we arrive at the following: If ¢(x) is a nonde-
creasing positive function, then ¢'(x) = 0, ¢(x) > 0, x> 0, and if z (x)

2(0)=z'(0)=0

is an integral of the equation
/4 9 1
2= — (¥ — 1)z + o)

then z (x) is a nondecreasing function.

Let us turn to (11) and let us form its variational equation when the function 7 is the increment —A;
since (11) is Y under the condition that A = 0, we then obtain for Y

” 9 1 - 3A
8Y” = —F(Y—h—§v)6} +35.

Let us equate the integral of this equation to the integral of the equation

3
_f—'hgv

8Y (0) = 8Y,(0) = 8Y7(0) = 8Y( (0) = 0 :

Y} = — (¥ —h)8Y,

by setting

X=8Y — 8Y,,

we obtain
” 9 PRI | -
X:_ﬁ() —-h)X“;"gUﬁ).

For infinitesimal v we can replace 8Y by the nondecreasing function 6Y; and in conformity with the above,
we will have

X' >0
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however, reasoning as before, let us prove the monotonicity of the integral of the equation

X7 = = (Y —h —di) X + ¢ ().
¢(r) >0, ¢'(x) >0, dh >0.
Hence, by induction we obtain that for any v > 0 we have X' > 0, which proves the lemma completely.

5. THE OPERATOR I AND ITS VARIATION

Let us introduce the following differential operator:

1, 1) = ("2 (1+3w) —C+ht +o+ . )

Let us study the variation of this operator upon making the transition from the line I to the nearest line T.

LEMMA 2. Let f(x) be a continuous function |f(x)] < \}hz, v— 0 as h— 0, and along the line I': y =
yx),y(0)=0,y(0) =h+ «a

I(Ty, Ty=F(z), 17"

while along the line T: ¥ =y (x), ¥"0) =0, y(0) = y(0)

I(ro' ﬂ:ﬂz),
where
Hz) — 1)} <.

Then for 0 = v< khz, 0 < 7 < kh? we have

B@ —y@l<ecn 222, (18)

where 6—~0ash— 0,

Proof, Indeed, taking account of (11) we can represent (17') as

V= b0 + 1)+ 3 gl @,

where [ (y) is a continuous and differentiable function of y and u(y) = 0 (%) and p'(y) = 0(¥"), respectively,
in the neighborhoods of the zeros of ¥ and ¥'.

Setting

Fz) — f@)=ela), lea)} < e, y(z) — y(2)=e(2)

and forming the variational equation for (18), we obtain

# ;. 3 " . ke
¢/={w’+ﬂ T?(hiu)ﬂ}(pﬁ-—}f‘z‘)
or taking into account the expression for ¥ and the conditions for v and

” B - k
o =g, (19)
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where 6 satisfies the inequality
—G — 0h) <0< G - Oh).

Noting that ¢ (0) = 0 and ¢©'(0) = 0 for our case and that we obtain the greatest value for ¢" by putting 6 =
G + 0(G) and € (x) = € in (9), we find the original estimate by integration.
6. AUXILIARY PROBLEM

Retaining the notation used in Sec. 1, let us examine the following problem: Let I'y: y = yq (x) be such
that y, (x) is periedic with period 2w, admits of a uniqgue maximum at x = 0 for |x] = @, y,(—x) = y, (x), and,
moreover,

o (2) — o] < KAS, Jyo () < KRZFY,  ys (@) << KR, (20)
. v<<kh® v>0.

Let T'j denote the line y = yo(x) + A, where A is some constant. Determine the line 'iy=y &)

ylr--20)=y(z), y(0)=h-o

such that y (1"(',, T) = 0, where @ is a given number and the number A mustbe determined, A = A{yo}. Let

y(x) =H yo(2)} =H{y,)
denote the solution of the problem posed.

Let us henceforth limit ourselves to the case when the numbers C and A are determined from (8) but
the number a belongs to the range h? < a < 2h% + 0(h?). Moreover, let us consider the solution of the prob-
lem posed so that H would be even and would admit a single maximum in the interval of the period at x = 0.

Assuming the solution of the problem posed exists and |A{y,}| < kh®, let us establish a number of its
properties.
7. ESTIMATES OF DERIVATIVES OF THE WAVE LINE

Let y = yo (x) be the solution of the posed auxiliary problem. Let us find estimates for y', y", and y™.
Without limiting the generality, we can additionally consider that A{y,} = 0 under the condition |A{y,}| <
kh® because of (20).

LEMMA 3. We have

ly (@<

1 1
log %

where k is a constant dependent only on the constant k introduced above.

Proof. Let us note that because of the elementary variational lemma from conformal mapping theory
2] we have

ly(x) — b > kh?.

Let ¢ denote the maximum value of |y'(x)|, and let

y'(zo)=e.

In order to obtain the desired estimate for c let us consider the derivative of the function

P =1logV =log|fi’ (2, I'g, T
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with respect to x at the point zy = x¢ + iy (xg). Because of (1), at the point under consideration, we have
dP ke 1. \ e c -
—=i——.q:~—(-——;—3h)—.—=—-——{—;—ec. (21)

Now, let us find the upper bound of this quantity by starting from the geometric conditions imposed on Ty and
I, To this end, let us construct a domain A bounded by: 1) a segment & tangent to I at the point zy = x +
iy (x,) enclosed between the lines y = h + kh® and y = h—kh?, 2) rays of the lines y = h # kh? that issue from
the ends of the segment constructed above; 3) the segment ¢, of the line y = kh*tV (x—x¢) + v (where x; is

the abscissa of the middle of the segment @) enclosed between the lines y = v + kh®; 4) rays of the lines

y = v # kh® which issue from the ends of the segment ¢4, Let & = fi(z), fi{*») = x<map A onto the strip
v<7 <h and P = log|f; (z).

Because of the above-mentioned lemma, it can be seen that

dP 14 ,
(] > ] —E e @)

For the mapping & = f(z) let the segment (—£4, £4) correspond to the segment d and the segment
(ﬁfo), Ez(o)) to the segment dy; then, evidently,

- h2 — _
G=0= ) =—0p", B =0n'"

Let us construct a harmonic function Q in the strip v <7 < h, which equals ¢ on the segment (—§,, §,) of the
line 7 = h, kh®*” on the segment (Ei(o), Ego)), and zero on the rest of the boundary.

We have
oy - -
dP, Y e L kk +v S‘ dt 4 8 g\ dt _ ¢ o opptdtv O o ar n
_dgh""*]an§=°< oo RN A A FERTS hj N 217
N=h —kh SD* 5 %Sh'Th——v };.‘hsh‘?t
Hence, comparing (21), (21'"), and (21"), we obtain
dt
ﬁ]'l_t<eh"
Kh
<
which means
* kh 1

which is the final estimate for c.
LEMMA 4. We have ly"(x)| <kh.

Proof. Letus perform a calculation in the variables £, 7 and in conformity with this, let us set
YE) =y (&, B)], Yol®) =y 7ofE, v)]-

for points of the wave line and the bottom, where x = x (£, 1) is the real part of the function inverse to f(z,
T'y, T). Moreover, let us introduce the conjugate harmonic functions P (£, 1), Q (¢, 1):

P= —logl = —loglf |z, Ty, T}
Q= —argf (2,15, T
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At points of the wave line we have

1 al ‘=tgQ, (22)
V=i = (L7 0C
Analogously, along the bottom
Yyo=(1--60)Q". (224

The last relationships show that Q' has the very same order of magnitude as y". Let £ be a point at
which |Q'| reaches the absolute maximum; for definiteness, let us assume that

. Lk ' e
0 ®=20>0w) (23)
Let us calculate the value of 82P/882 = P*? at the point (§4,h). In conformity with (1), we have

= — %log(C — Ay)
or replacing C and A by their values from (9) and assuming

y=h-+1h, 7| < kh,

we obtain
P=v+kh?*4-0%, (24)
from which
P=1vy, (25)
P =ty 2Vt =(1+ ol . k.
log? "y

We can express this same quantity in terms of the value of Q' by means of the Poisson formula. As-
suming h—v = hy, we obtain

|~

v __ 9Q Qi o E1
p e Rk (1-+6m) -

=

5. ——————Q, Q; dE%—if S QG- vdE (§' v).dg . (26)

2 21;—;1 K

Equating (25) and (26), let us show that Q'— 0 as h —~ 0 Indeed, if (22') and (20) are taken into ac-
count, then

g_ dg < 00y + O(i)h 27

sh 2 h

.-gx:'al -
be—s3
<

is obtained from these equations.

Moreover, by virtue of Lemma 2, Q — 0 as h — 0. Hence, setting |Q] = &, it can be seen that

. C oy 20 © . 10" .
Lj' Q_..__.____Qi dg\,._o__‘s‘ ds =-’f—h‘(cth§i—1). 27

~Uy ;
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This means that starting from the opposite Q; > K,

cthi — 1< kh
1

or

o< 2o,

log h (28)

which contradicts the assumption.

To obtain the desired estimate, let us use an expression for P in terms of the function §' (¢). In con-
formity with the Poisson formula, we have for the strip 0 <M <hy=h-v

f oz t oy 1 _y—y t 2 1 (y0—yG)——E)) (&)
VT 6tcosQ  dneos Q hy ﬂcos(j " F IPcos Q ,S ho:: 1 — &, . e dt kR
- SYTTE,
Or by virtue of Lemma 2, setting ¥ — ¥y =h; + Thy,
1 8
F=1+T+5 S 208 k)Y &) + o, (29)
i J g, Bt b
- 2 hy

where

BO=() — (&) — (¢ — L)Y (&) — 5 (t — Eo)%y" (&)

By virtue of (24) we have

=

_— =4 2
7 »1,-c—|—9h. (30)

Now, let us assume from the opposite that (1/n) 57"(5 o) can be arbitrarily large; then from (29) and (30)
we obtain

1 G(t)dt =
P Al = Khy' (&)- (31)

—cw §

Under the same assumption, from (27) and (22) it is obtained that

i ¢ 0—0 .

To prove the lemma there remains to show that (31), (32), and (23) are contradictions. Writing the
function @ in place of 6 in (31) for this, we have

t i

¢ 1 ) P
§(t) = 'S]dt Y [0 () — 7" (&) dt = Sdtf[%&%m _li cof‘o ] dt = (1 + 6h) § dt ((Q —Qi)dt -+ {at {60 (v —v,)ds +
0 1] 0

1] [} 1]
+ Vdt [ 60" (@ — @) de.
1] 0

Starting from the assumption of Lemma 2 and the inequality (28), it can be shown that the last two members
in the expression of 6(t) represented by (31) will yield quantities of the order of 0 (Q{). Noting, in addition,
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t 3

@(t)yd,

that the orders of smallness of y"(¢,) and Qf are the same and setting ¢’ — Q|=q(t-&,), W)= \"dt {
g 90
we obtain the following inequalities:
£ 0O e
R I (33)
i} Sh"j'
1 N o (t) dt
) =0,
o shro (34)
0 ¢ (<20
Integrating the left side of (34) twice by parts, we obtain
1 da 1
ry by & dr=o0(1)
0 sh? —-
or
@ 1 [ !
de? he 2 > Tt
T ST
Therefore, we finally obtain KhQ{ < kh? in (33), which yields the desired inequality.
LEMMA 5. Under the conditions of Lemma 4 we have
ly'(z)] < kH3/.
Proof. Let a = y'(xq) be the maximum value of y'(x). By virtue of Lemma 3 we have
Y(x) — ylro) > alz — z0) ~— iT‘ 0z — z)*
but by assumption ly (x)=y (xq)] < 6;h?; therefore, for any x
a(z — zo) — 5 Bh (& — 2)* < 0,42;
in particular, for x = xq + (2/6h)
@ _1a g
8 2O ST
or
a < V200,122,
LEMMA 6. In addition, if y? < kh?, then
i ]".
" (< —7- (35)
log—h—

Proof. Retaining the method presented for the proof of Lemma 3, let us find the expression for the
function P™ = 3P/8£3, obtained from (24), on the one hand, and from the value of Q" = #Q/8£2, on the other
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In conformity with (25) and Lemmas 3 and 4, we have

1
, S L, WV ., 4V, 2V . T
s S AR (C L DL (36)

where it is evident that

3
y”=(1--0n)Q" - kh*.

Now, let us consider the point &; at which |Q"] reaches the absolute maximum. For definiteness, let
the function Q™(£) also reach the absolute minimum at this point:

Q' (®)=0"(E)=0.

In conformity with the Poisson formula, at the point [£4, §r(£1>1 we have
k ’
sft——Eldt—i—FQi (37)
1

or since yJ and Q'(¢, v) in addition are of the order of h?, the remainder term is bounded, and, therefore,
from (36) and (37) we obtain

- j—ogi_i—g-dt> 0Q; + k,
R
where
0<Q" — Q1< 20",
and by virtue of Lemma 3
[0'] < kh.

Hence,

17 Q=0 201 ¢ a

— —dt> j :

B2 Nt-—E h2 Tt 38

1£5h2—2—-—’:1—1 1 Pi}iShz_Z}Z ( )

9
We therefore obtain a relationship analogous to (27'), which yields

" 6
0 < T
log=7-

8. ESTIMATE OF DERIVATIVES OF THE WAVE-LINE VARIATIONS
Let two lines Tj:y = yy(x) and T'y:y = yy (x) + 6y, (x) be given, where y, (x) satisfies the conditions of
Sec. 7 and Lemma 6, and the function Sy, (x) is such that

[8yolx) — &'| << & (39)
[6yo ()| < kRS2,
[8Yo ()] << kh2.
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Moreover, the wave lines I'iy =y {x) = H{y, (x)} and T 1y =y (x) + 6y(x) with the identical period 2w
correspond to the lines T’y and T'y, which satisfy the conditions taken in Sec. 7, and such that

18y (z)| e, sSAQ{.I/O (@)} =0, 1A (g, + 8yo}} = 0. (40)

Obtaining estimates for the three derivatives found for the function 0y (x) is the problem of Lemmas
3-8. Because we do not use the symmetry of y (x) in the subsequent assumption, we can reduce the prob-
lem of estimating |6y'|, |6y", |6y™| to the estimation of the same quantities at some fixed neighborhood of
the point x = 0 by translating the origin. By analogy with the previous section, let us perform the calculation
in the variables £, 7 and in conformity with this, let us reduce the data of the condition to the variables £, 1.

Let the correspondence

E=ta), z=2(8); EHO)=2(0)=0;
E=8i(), z=2,(8); & (0)=12,(0)=0,

be established by virtue of the conformal mappings z =z (&) =x{¢,m + iy, M, z = 2. (&) = x ¢, n) + iy¢,n)

of the domains D (T, T): D (T, T) onto the strip 0 <7 < hy between points of the lines T, T' and the line  =h
and the correspondence

=E0), z=zOE);
t=8"), z=a"@,

between points of the lines Ty, -I_‘o and the line 7 = v. We have

L@~ = 5(0 ~ g% (41)

where Q and Qg are the slopes of the curves I and T relative to the x axis and V and Vi are the velocities
of fluid motion at ecorresponding points of I' and I'. Retaining only the principal terms in the right side of
(41), we obtain

-V, v si
& (1) — E@) = j hetd j R (0)— Q) da

Noting that |V;— V]| < 2&/h by virtue of (1), [6] < Kkh?/? by virtue of Lemma 4, and integrating the second in-

tegral by parts, we obtain
|y (2) — L@ <= 5+ BB S Q1 — Qdz <52 2 - kkPe, (417

0
By (o) — BN <2 =+ knix |0, — Q). (41
Moreover, d¢;/dx = 1 + kh. Hence,

182 (B = oy (&) — 2 (B) << 22 & + Kh*%, (42)

and also

82 @) < 22 £ + k%%10, — QlE (42"
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It is impossible to obtain an analogous estimate for the correspondence between the line 7 = 0 and T'y;
thus, for this case we estimate

g
o@® = [leu®—@)dE
0

Let us first consider the case when y; (x) = v and €'= 0. Under these conditions it can be shown by
using Theorem 1' in [2] that we obtain the majorant for o if we set

Syplr)=g, for 0 <<z < §,
8yo(z)=—g, for £ <<0and z < E.

On the other hand, without changing the order of o,

Byo(z)=0 for || < E,
8yo(z)=—e for = > E.

However, in this case we will have

L

o/ ()= 4+ |

Integrating this equation twice, we finally obtain
H ke
o®=[Bz@dE<PE+ ek n=0.
p .

1t can be shown by an additional conformal mapping, that the same estimate will hold even in the gen-
eral case, »

For the lines T and T let us set

y=y[z(8)]|=y(¥),
Y=yl x,(8)] -+ 8y 2,(E)) = (&) + 8y (&),

and analogously for the lines I'y and T‘o,

y=yo[zO(E)]=1,(8),
y=yol)+8y(z)=o( E)+ 874(E).

Because of (41) and the condition |y!] < kh!/2, we obtain

8Y(E) < e-rkhl/%eE.

%
Starting from (41"), let us estimate j |8yidE, @>0. We have

g ¢ k g
§1670) 45 < [ \6wal i+ § ol 182l dE < edt —a + lyo @0 (®) -+ [ 1o'yy| 0 (8) dE < edt — a + kb2, (43)

Let us note
18yl << [8y’| (14-Bh)-F-hhek-tkhl/%. (44)
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Let us now find the estimate of dy', Sy™ and 6y,
LEMMA 7, For £, < kh& we have

18y'1 = vy 2) — o' (@) < —= s
h]og——

where k is a constant dependent only on the constant k introduced earlier.

Proof. Let m(¢) denote a function equal to 2& for 1€ < 1/kvh and 2kv'he |&| for |£] = 1/kVh, and let
my|£] be a function equal to 2g, for K| < (£,/ke)h~¥/?, and 2kh3/ 2e£ for the remaining values of £, By vir-
tue of (42)

1y
18y B)l <m (8), j 184, (B) d& < m, (E)E.

Let us examine the segment |£] = 1/2xVh. Let the function |§y7(¢)| considered on this segment reach an
absolute maximum at the point a;, |a;| = 1/2kvh, and for definiteness this will be the maximum for 8y*(£).
Under these conditions it can be seen that a point @ exists on the segment [a;, 28/ 557'(a1)] which possesses
the following property: If a tangent L to the liney = 63_7 (¢) is drawn through the point [a, 6§r(a)], our line
will be below L to the right of @ and above L to the left; we will hence have at the point a

g="5y'(a) > 83'(a,), 8y’ ' (@)=0. (45)

To obtain the required estimate of q, let us express the value of the seeond derivative of the function

8(8)=2,(8) — 2()

in terms of q. In conformity with (1), we have

b= UL ey Hlser ...,

where

V=Ve¢—hy V;=Vec— by,
gQ=yV, tgQ,=uv,

and by virtue of (8)
oV = — ——(1 + 6h),

50 = cos*Q{VEY +¥/ L (1 + b}

which means
az(§)=7:£ §T+BhT+§’6’+.... (46)
Hence, taking (45) into account, at the point @ we will have
6 () = L@ (4 1 6h) = -L + 6. (47)

Now, let us find this same quantity by considering x (§) as the boundary value of a function conjugate to the
function 6y (¢, n). We have
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' 6
8z" (@) = [a‘;al:] L=a . (48)

M==hy

These results follow directly from the Poisson formula that if the function dyreceivesa positive (negative) in-
crement to the right (left) of the point @, then the right side of (48) diminishes. Analogously, if the function
Oy, receives a positive (negative) increment to the right (left) of the point @, then the right side of (48) also
diminishes. Therefore, we obtain a lower bound for 6x"(a) if we replace the function 8y in (48) by v (£, n),
which exceeds the value of p:p(£) = 6y (a) + a (¢ — a) on the line M = h; when £ belongs to the intervaly:
|6y (@) + qé—a) <m(); p = m()whené istotherightof ¥ and p =—m (§) when £ is to the left of ¥, and the

e

value of p on the line 7 = 0 is such that } o dt = my (&) (2 —a) for § > @ and

f f..-'m".

d°=—m.,(g)( —a) for £% <a,

-]

Let us represent the function v by the sum

v(&, n)=0y(& n)+v:Es M)

where v, and v, are harmonic functions defined by the conditions

(&, h1_)=v(§s ), (8, 0)=0,
Uol&, hy)=0, y(&, 0)=v(E,0).

By virtue of the reasoning presented above, at the point @ we have
r” v v
82" (0)> 31 (G + g (49)

We obtain for the first component by means of the Poisson formula

S
) t VR V- © )
0 fav, a9 ki g—m' (§ —a) . q g di . . q—2kY he dt
aq(og)>hl+;g‘5.—_z'n 3 -_h:-*-ﬁ N N
2 ey SHATT Z Sy T,
q , a &Vh
or, taking into account that q > €, and integrating, we obtain
> e -1 0

Applying the same Poisson formula for the second number in (49), integrating by parts, and taking ac-
count of (417), we obtain '

0%,
d0Edn

° T A1 VTE
ka mg (8 — a) |3~k Rl d§ < .ISEQ + khe. (51)
JT ch? € 3
[1] hl h2

Comparing (47), (49), (50), and (51), we obtain

q e )
Ny [cth—qz —_ 1] —Q —_ PRIy

Therefore, either

ey
I<=33 PeE
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cth %_1 < Oh,

i.e.,
ke
h log _:T
We obtain the desired estimate if we also use (43).
LEMMA 8, For &> 1980/h3/2 we have
By} = v (2) — ¥ (2 <32 (52)

Proof. First, let us go from the variation dy™ to the variation 637". In conformity with (41), (46), and
(47), we have

8y =y (z) 71— ¥ (z) &’ + by'zy, (53)
8 =y () el — ¥ (1) 22+ ¥ (2)) a1 + 8y'xi — o (2) 2" + Oy'al =
= y"z'20x 1 2y"z'8z' + y'z"0x L+ y' 62" + Sy’x; -+ 6y”z',2 ves

Hence, taking into account (41) and Lemmas 2-6, we obtain

ke
T’
hlog —
ogh

8y’ = (1 + 6Rr) 8y” +

The problem is thereby reduced to estimating dy".

Retaining the method presented to prove Lemma 6, let us consider the function 5y" on the segment
[~ &,, &4, £, =kVh and let @ denote the point at which |6y"| reaches the absolute maximum; let the maxi-
mum for 8y" hence be reached at a and let it not be less than he /h. In this case it is seen that there is a
point a@ in the segment [a,, a; + Vh/k] such that for any £ we will have

—u()=0y(E) — byta) — 8y (a)E — a) — - 83" (a)(& — a)* >0,
and, moreover,

q=8y"(a)=8y" (a,).

Now, let us express 6x'@) in terms of values of 6y(£) and 8y, (¢). To this end, let v; (¢, M) and vy(£,n(,
respeetively, denote harmonic functions defined by the boundary cenditions

UI(E, h)=6-.l'/(§)v vx(g, O):O,
Vi€, B)=0, vo(E, 0)=8yq(E).

We have
rtay= 9] Lo
8’ (@) —[ on ]§=a i [ o ]§=n' (54)
f=h n=h
Using the Poisson integral, we obtain
v _ 61 (O @E—af g m F_w(®dE 8 g A u@dE 55
—#=Tzﬁ§—q—r§*:rd§“h—zf‘75—’:: — S < khg— 57 | RERET) (55)
Sw ST ) Yoo S5 TR
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In conformity with (43), for |&;| < 8 Vh we obtain

oy ¢ [l o,
[ e dE < Be. (56)

_m ch? 5

Let us compare (486), (54), (55), and (56). According to (46) and Lemma 6

If from the opposite
K
g>=2,

where K is selected sufficiently large as a function of k and 6, and if

g << Ohe,.
then by virtue of (54), (55), and (56) we obtain
8z (a) = 7? - Kks}?f_, g_______u(&)é(_g_)a (58)
—0c § }lz—z' T
Therefore, by equating (57) and (58), we obtain
‘i‘ d -
h—i- l(in)—}g—)— = Bhq. (59)

2 h

_ Hence, in order to arrive at a contradiction, let us evaluate 6x™(a). Differentiating (46) and noting
that 6y™(a), we obtain

5.27”’((1) ’I (1 1 Bh) _—_l-' (60)
hlvg— 7

Let us express this same quantity in terms of values of 6y"(§) and 6y {£) by means of the Poisson
formula. Using the functions vy(¢, 7) and v, (£, 7) introduced above, we obtain

o= (), + [ o

§
n=h n=h

We have for the first member

a 9%, Lo, x j u” () d§ (62
Mg 3 TR | TThmE—a’
om 9% g 2% ) . _3!_ 3 - a )
and by using (43) for the second we obtain
8% dv Oe ¢ :—a+4 K32 o
L P S L ds < \h& L (63)

ch?
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Assuming q to be large compared with £/h and using the condition
g0 << QR e,

from a comparison of (60), (61), (62), and (63) we obtain

oo
1 S__“_lﬁélﬁ_ﬁ__./_‘_l
Ry T nE—a ™Kk (64)
—co Sh% =
2 h

where K can be taken arbitrarily large. Integrating (64) twice by parts, we obtain

w

Q u (8) dE hg
i § =i <k
—0 sh? ? A

which contradicts (59) for large K.
The following refinement of Lemma 6 follows directly from what has been proved.

LEMMA 9. Under the conditions of Lemma 7 we have

. , ke
18yl = ly; (&) — ¥’ (@) <575 (€5)
LEMMA 10. For &, < kh’t
717 " 17 71-
189" = oy (2) — y" (@) < ——. (66)
12 log e

Proof. In order to be able to perform a calculation in the variables &, 7, let us find an estimate for
Q™= 8®Q/8¢3 for 1 =h. Starting from (24) and (25), and having estimates for Q, Qf, and Q", it is easy to see
that |P"| < k, |P™| < k/hlog(1/h) and Q™ = y1V(1 + 6h); hence, taking (24) into account, we obtain

PV — 910 . (67)
{3

Taking into account that the function 86/94° is conjugate to the function 8%P/3&2 for 7 = h we have

apll
QIII — _éj_"_‘
Let us construct the harmonic functions P(;' and Pl":
. P for nM=h,
P":'[O for =0
. 0 for n=h,
Py=1p" for n=0;:
we evidently have
apP; 9P,
Q" = _a_T:) - _gﬁl_ (68)

Let &, denote the point at which |Q™| reaches an absolute extremum and let us estimate each of the
members on the right separately. We have
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aP' "z " . pr — . p" 1 4-_1- P d
Ia_o < P So)+ S‘P (&) — P (§o) E(_g-g En) (Zo) dt -+ %75 ' 3 C(;z Ei%g()’ E_ (69)
K _‘m sh? 5 2= R—%f>a sh? 5 —5—
The last integral is evidently zero for any @ > 0. Noting that
[P''(8) — P"(Ro)<K, (70)
let us set
kb
07 (&) )
then (69) can be rewritten as
oP et 3 e
0 1 IPHE=8 g | 3 & 5' — & -k, Q" (&)
I< +2b 2&5-—&; d§+2h . E—‘Eo< rk]/ h (71)
to—a Sh* 5 =5— Js—Eu>a sk "2‘
Let us turn to an estimation of the second member in (68). We have
Py k [reo-a _x [ Pn0-rGo 72)
- — Y3 —
n hz__wsz%’éh'zo_;_k b e hz_"’_ghgo

Let us estimate |P'(§, 0)—P"(¢;, 0)] by considering P as a function conjugate to Q,

P'(E0) =~ Q&) —Q (& 0) +

R QEO—QE 0= E0)
+ 5 ) A L—E d+
— ST TR

Lot j Q. ’l)——o(ﬁ h)—‘(t*-s)Q G.h g
b2

o
o sh=7—+k ,

Therefore, taking the explicit estimates for Q and their derivatives into account, we obtain
[P'(E, 0) — P'(Eo, Ol<<k |E—&ol-+ ks

but then (72) will yield

aP;

k
<+ (73)
Now comparing (63), (71) and (73), we obtain
@<+ C,
which finally yields

1<+ (74)

By virtue of the estimates obtained earlier, 6Q" can be represented as

60” Y - ke S -+ Q"8z,
klog %
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from which, by taking account of (42) and (74), we obtain

Iayﬂll — IGQ”I ’i_ Qh - E) (75)
. This means that for pur purposes it is sufficient to prove that
160" < — (76)
A2 log' h

From the opposite, let us assume that there is a point on the segment |£| < kV'y at which

607>

h? log 7[

where K is large together with 1/h; but then according to Lemma 7, |5Q!| < 8¢/h and there is a point &; in
the interval | g < 2kvh such that

180" > — —K2 80" (&) = 0:
h?log + 7
hence, either
8y [ <OQ'(B)+ 80" (EE—tn, :
”@W>an+w%w@§3 =
or
8078 [ SO0 (E)-00" EaE—Ed,  EE,,
e®{ Z @B K

For definiteness, let us investigate the first case. By virtue of (24)

o 5'”/
8P” = = (14 Ok) = (1 + 6h) + (77)
hlog+ lz
or setting q = 6Q"™¢,) and taking (75) into account,
8P" =L (1 + Oh).
Let us find 6P™ by considering 6P"as a function conjugate to 6"Q. We have
(78)

I 6 s
8P (&) = 5—;160 .
In the strip 0 <7 < h let us construct harmonic functions u (£, 1) and uy (4§, 7) with the boundary conditions
H
u (& k)= | 6QE M, u,(50)=0,
[

;
(G k) =0, u(E0)=|5Q(E 0)d.
0

In conformity with (78), we have

" ©dup + 3 dur
8p” (&) = l 55—55'%- (79)
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Let us estimate each of the members in the right side of (79) separately.

For the first member we have
1 - 1 9_60”
W_IzTTZEE—g—r dt. (80)

In conformity with the reasoning which has been used repeatedly above, and taking into account that
|6Q"| < k&/h, we obtain the least value for the integral in the right side of (80)if we set 6Q" = q for |§—§,| <
key/gh and §Q" = 0 for the remaining values of £ . Therefore,

>4 —9.% £
>4+ 3 f _g =4 +7[cthqm~1]. (81)
CE ST
qh
Let us examine the other members in (79), We have
« - ;
0 oy & 5‘ lug (2,08 B S ludt a8 (82)
P T R E—E T8 —_— ]
on 08| S i 2R E Lt sm%%—gu-k

Let us obtain the estimate of S|u2| dt. In conformity with giving uy, by assuming £, = 0, we have

4

: ; ;
ve= i< [yl at = | gt
& 0 0

§

Y80 0) dgl.

0

For the subsequent calculation we consider that by retaining just the principal terms we have

_5 g Qer=Q+-QP,
=0+ Bt 08P,
84'(2) 8y (0) = uy + j PoQdE -+ Y QdPd:

or

g g | t 1%
v< {loy® — oyl ag +  a¢ !s P60d§| + {agl] QﬁPdE,l.
0 0 0 0 [

Considering that [Q (£, 0)|< kh"/2 and 1Q"(¢, 0)| < kh? for the last two integrals, we have

E

s |8 :
Jdﬁlﬁ P60d§’<_§ |Py] de - | a& §|P'u|dc<1h‘/2
0 0

0
3 £ t 3
sospdal Vieraz|f apd§l+ Sdéh Qdt .ﬂ 8PdE| <
0 0 0

14
<kh5’2§ |82 dE -i- kh? s dz ﬂ [82] dE < Bh¥/%eE® - Jh% e |5) -+ Fhe |E® -- kh2e 2.

t
|z
1]

This means that taking account of (42') and the condition |£,| < kv'h,

0 < Fegl§| -+ RS2 KA E— Byl kR 25— g 4- k) E— Eyf%.
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Substituting the expression found for v into (82), we finally obtain

l 4 aa"?l < I.'enh”g’ 2o ke < kel ™2, (83)

Comparing (79), (81), and (83), we obtain

8P (£)>-L 3,1;— [cth q-f,-, — 1] — keh—5P2,

' Comparing this inequality to (77) and taking (75) into account, we find

€ U B 12
cth qh!——1<9h—;—~k—log T <kh
or
k
< T
g -

which contradiets (75).

9. ESTIMATE OF THE DERIVATIVE OF THE REMAINDER TERM

Starting from the estimates obtained above for variations of the derivatives of the wave line, let us es-
timate the variation of the remainder term in the approximate formula (2) upon going from this wave to an
infinitely closeby wave. Using the notation (1), (17), let us assume

R=I(Fy, T)—I(Ty, T)=l|f'(zy, Ty, DN—If (21, 2)+ky"*+2. (84)
Let the function F(z) (F (¥ ) = zy), F (% ») = z,) which realizes the conformal mapping of the domain D(T, T')
onto the domain D (C,, €) upon correspondence between the infinitely remote points of D (Tg, T} to the angu-

lar points of the erescent D (Cy, C). A line parallel to the x axis and passing through the point z; is taken
as Cy,. We evidently have

f(zy, Toy T)=f"(21,2,F'(2y))
or retaining only the principal terms,
'z, To, D= 1f"(z1, 2)+21f (21, 2.)1* logiF’(z))];
hence,
R=2f'(z1, 2,)|? log|F"(zo)|+ ky"*+ . (85)

LEMMA 11. Under the conditions of Lemma 10, we have

ke
T (86)

h

18R] <

where k is a constant dependent only on the constant k in the conditions of Lemmas 7-10.

Proof. In conformity with (85), we have

oR=1F %,ff'—‘ = 4| NNog (P18 \f| - ky'Sy’ - or, (87)
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where we consider the variation for a fixed value of x = xy, |x¢] < kV] h. In conformity with the estimates ob-
tained above, the last three members in (87) will be on the order of S ,‘ which means Ehat it is sufficient to
estimate the first member. ILet C denote the contour which passes through the point z; = xy + 1[y(xq) +
dy{x)] and is tangent to I at this point, and let Cy be a line parallel to the x axis and separated from it by
the spacing 8y, (xq) '

8yo(z)l < &'+

Let us map the domain D (Cq, C) conformally info the domain D (Cy, C) under the condifion of correspondence
between the angular points, as well as the points z;, z;. Hence, let the line T go over into the line ¥ and the
line T."o into the line ¥,. Let us map conformally z' = y (z), ¢ (¥ w) = £, ¢ (z) = z; the domain D (T'j, ') into
the domain D (v, ¥). By virtue of the elementary rule of differentiating complex functions, we obtain

S1F'I .

ST~ logly' (a0 (89)
Let p = p (x) and Py = py(x), respectively, denote the differences between ordinates of points of the lines
Y, I and 7y, T'p. Let us estimate each ofthese functions separately. To this end, let u(x), u(x) denote the
difference between ordinates of the points C, T" and Cy, Ty, u(x) and uy (x) the difference between ordinates
of the points C, I" and Cy, Ty. By virtue of Lemma 9 we have ‘

ke

nlog %

Je — o,

lu (@) — u () <
and by assumption
[e(x) — uy(@)] < € << Kkh%e.
Hence, taking Lemmas 7 and 8 into account, we obtain

p=u(z) — (1+p) u (@+va),

where |1| and || do not exceed ke/h, i.e.,

ke €

IRPPT B TS T SRR DUR
lpl<h2]0g_1.lx ‘Tl‘ T u A u ].’II Ll

or noting that u = [f[y™dx® and using Lemma 5,

ke
1
2 Py
k2 log %

[z — x5

ol <

Perfectly analogously, for the function o, (x) we obtain

100l = {o () — (1 + ) g (= + 82)| << £ + p|uy| + Eug |52,

where the function 6x satisfies the inequality

16 (z)} dz << liz— (xr—x,)® + keg |z — x4

Bee—yu-

by virtue of (41').

Now, let us use the Poisson formula. In conformity with the definition of the function y (z), we shall
have

)

oo 0

k lojdz= | , k 100 dz ke
logl o’ (z — — el o b .
‘ g!q)(l)”<h' S st r—z 'k y\ shzﬁ.if_ﬂ—:—k<log}_
— 2 h oo 2 h h
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10, CONTINUITY OF THE OPERATOR H{y,}
AND THE FUNCTIONAL A{y,}

Let us furn to the main problem formulated in Sec. 6. Let us assume that for some class {yo (x)} of
lines with period 2w, the solution of this problem y =y (x) = H{yo}, y{0) =h + a exists. In this section we
shall show that this solution depends continuously on y, (x) and we also establish the degree of this continuity.

LEMMA 12. Let |8y, (x)| < &), A{y,} = 0 and let y, (x) satisfy the conditions in Sec. 8 and such that
[Yole) — yola)] < vB2, (89)

where v tends to zero together with h and (11) has an integral of the function Y (x, @) denoted in Sec. 4, for
1 =Y, (x)—h, where 2h’> a > 2h—p, lim g = 0; then for a sufficiently small €, we obtain

18 Hyo )l = l{yo - Suo) — H (3,)1 < 2, (50)
N NATRS 2 000

" Proof. Let us show first that for |x] < kvVh we have
Y — y| < kvh2 (91)

Indeed, along the line I':y = (x)
I(Ty, T)=I{T,, T)+R=0;

but in eonformity with (5) and Lemma 86,

from which we obtain the desired inequality for |x| < kvh by applying Lemma 2.

Hence, taking account of the properties of the function Y (x, @) noted in Sec. 4 for « close to 2h?, for
the function y (x) for xVh < x <@ we have

y@)<h—0k2 0<<O<{, (92)
Now, let us prove that if
Al > 2%,
then
18y) < 5. (93)

For definiteness, let us take A < 0 and let us assume the opposite, i.e., that

16y I>I€IA|

where K can be taken arbitrarily large, Let k; denote the point at which |8y| reaches its greatest value and
let us examine two cases separately: a) x, < kvh, b) xy = kvh.
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Let us start with the first case.
Let |8y (xg)| = KolAl/h, Ko = K. At the point x, we have
8J=68I+8R=0, (94)
where in conformity with Lemma 2,

o> e i E 1AL, (95)

and in conformity with Lemma 11,

og_;- hlog % (96)

Ry <Xl _ kKo |4
1
Comparing (94), (95), and (96), we arrive at a contradiction.

Now, let us examine case b) when x; = kvh. For definiteness, let us assume that oy (xq) = |8y (x¢)] =
Ky lAl /h. As in case a), we have the relationship (94). Let us estimate 81 at the point x,. By virtue of (92)
and the condition

M ENEY
we find

Sl < GK(,eh— kA

which contradicts the relations (94) and (96). The case when 8y (xy) < 0 at the point %, is considered per-
fectly analogously. The inequality (93) is thereby proved completely. If JA| < keg/h, then we show by anal-
ogous reasoning that |8y| < kEU/hz. This means that there remains o estimate |A|, Let us again limit our-
selves to the case A = —A; < 0, Let us assume the opposite, i.e., that

where K is arbitrarily large. By the condition along the curves I'y:y = y; (x) and T':y = y (x) we have
I(Ty, T)+R=0,
and along the curves I'y:y =y, (x) + 0y, (x)—Ay and I':y =y (x) + 6y{x)

I(Fo, T)-+R-+8R=0,

where by virtue of {5), (93), and Lemmas 6 and 11 we have

R <2

log T

1
hlog+

Hence, considering the variation 61 and taking account of (91), we obtain

h3 1

6y"=_i(y_h_%v+_‘2‘a_>5y+i_f_g__@_f
. log—h—
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Hence, by virtue of Lemma 1 for sufficiently small h and for 0 < x < 2kyVh we will have
Sy >0,
where
k
8y (ay) == X2,

for x; = kpVh. Here k, is fixed so that (92) would hold for x> xy.

Let us.consider the parabola

— kot (z— )"
TR (@—zy)?

and let x; denote the point at which the difference 6y— ¢ reaches its greatest value. We obtain in the cons-
truction. '

2>z, yla)<h— Ok, By(y)>5,
by — ¢ — [dy(zy) — (P(-To)] <0
Noting this, let us again examine the variation 61 at the point xp; for sufficiently small h

81 > X,
. {1

however, in the case considered

bR < 24
k logT

and we have again arrived at a contradiction to (94). This means A4 < keo/ h, which together with (93) proves
the lemma completely. Let us prove still another assertion which yields an estimate A{yO} for a speeial
class of lines y,.

LEMMA 13. For 7 =y, (x)—v let the integral of (11) be the function Y (x, @), @ = 2h?—vh? while for
y= 3_70 (x)—v the very same integral is the function Y (x), Y (0) = Y (0, %) and the period of Y agrees with the
period of Y (x, @). Moreover, ¥ = kh?, and |y, (x)=y, (x)] < vh?, |M{y,}| < uhd. Under these conditions, if the
numbers ¥ and p are sufficiently small, we obtain

- kh&
log
- kh?
. |H L’lo} _Y(J’)I< 1
log i
Proof. It can be seen that it is sufficient to examine the ease when y, (x) = y, (x). Moreover, let us
consider A = —A; < 0, since the proof is perfectly analogous for A > 0. Let us assume the opposite, i.e.,
that '
Kqh®
A==, (97)
log—h-

where K; is arbitrarily large. Let us construct the integral curve ¥y = Yy (x, @) of (11) by setting 7 =
yo (x)—v—Ay in this equation. We obtain the expression
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I(FM {7):0,

where f‘o is the curve y = y; (x) —A;. Moreover, by virtue of Lemma 6, along the line T':y = H{yo} = y{x}

(T, 1) < I"'"Z : (98)
og -];'

Therefore, by virtue of Lemma 2 for |x| < x; = xVh, we will have

¥y (2, 0) — y (2 < 2,

log "

(99)

where x; can be chosen so that Y (V2 xg0) < h—6h?, Moreover, by virtue of Lemma 1 and (97) for x = 1/2"1

/ K, h?
8Y =7, (1/_2 Zas a) — Y(1/2 z,a) = f -, (100)
. ’ gy

and for x = x4

6Y — (11'2 + k:i) th’.

log "
Let us construct the parabola
ky ko) Kyh? (z—@)2
¢ = g(z) =tttk Ky oo (101)
. log 3 (—2_ z — 0))

By virtue of (99) and (101), we obtain y (x) < Y + p for |x| = ¥,, while

¥(z;) > Yz, @)+olzy)

for x = x,. This means that the difference y (x)—7Y (x, @)— ¢ (x) will reach an absolute positive maximum at
some point x, > ¥, x, where at this point for sufficiently small ¢ we will have

ylzg) < h — Oh2. (102)

Let us introduce the curves T'y:y = yy(x) and ¥:y = Y (x, @) into the considerations. By virtue of (4)
and (16) at a point we obtain

3

5
J (Tg,¥) = I (T, y) -+ kh* = kh®.

This means that at this same point

7 (T vl = 5 (U Oy — 2 > =R B
Iog—ﬁ-

But by virtue of (102) and the maximum condition y—Y—¢, at x = x, we obtain

7 (T, ) > 7 (Tyu 9 — (4 =+ 81) g (20) > "‘1”—1"”‘
og-h-

which is impossible, since J (f‘o, f‘) = 0 by assumption. The inequality (97) is thereby proved completely.
However, the other desired inequality (98) resuits from (97) and Lemma 2 for |x| < xvh. For any x this

689



inequality can be obtained if we use the relationships
o) <h — 0k, k) h <z < o,

by applying reasoning completely analogous to that presented in proving Lemma 11 and the first part of the
lemma under consideration.
11. AUXILIARY ASSERTIONS

Let us note in addition several simple auxiliary assertions relative to the correspondence of boundaries
for conformal mappings of domains which have a common part of a boundary.

Let the domain D be bounded by the lines I'y:y = yy(x) and I' :y = y (x), where y, (x) satisfies condition
(20) for v = kh?, and y (x) is such that

ly(2) — | <k®®, |y'(2)] < kR%2, |y'(2)]<< kh.

Moreover, letthere be givena line I'y :y=yi(x) which separates the domain D into a domain Dy :y,(x) < y <
y1 (x) and Dy :y; (%) < y < y{(x) and hence such that

0 << 81% << y,(7) — yola) < 0,78,

Let us map the domains D; and Dy conformally onto the strips 0 < n<lah?, 2h® <1 <h,=h(14-0k) re-
spectively, under the condition of correspondence between the infinitely remote points. Let £ = f(z) and
t = f(2) be functions which realize these mappings fol= o)== oo, fy(to0)=x00.

As before, we let Py and Py denote log |f(z)], log|f1(z)], respectively, and Q, and Q; are functions
conjugate to Py, Py, Q, = arg f(z), Q = arg f{(z).

LEMMA 14. Let y,(x) have a continuous derivative, and let x) be a point at which y{(x) reachesanab-
solute maximum (minimum); the function y; (x)is linear in the neighborhood of the point xg. Under these
conditions, if 6y, 8y = ke, |Pg 4| < k and

Ui (rg) > max y& (x) +~ Kah™™ (y; {x,) << min Yo (x) — Kah7'{2'),
then for K > Ky (k) at point [xy, y; ()] line Ty will have the form

i i
; L, E
= (P, —Py) < — kK (;i— (P, — Pg) > khz),

/

where ds is an element of arc of the line Ty.

Proof. Indeed, in conformity with the definition of P, we have

dPy _ 8Py p,  dPy 0Py P,
ds @ C ' 8 e -
At the same time
9Py _ 3Qy _ KBS RRPTY oy
Ty re N O
aP,  8Q, _ Kok’ 1
6 oy < gE = Ki
which means
d

(P, — P < k' — KR'? < kRt

ds

The second part of the lemma is proved perfectly analogously.

LEMMA 15, Let us assume that the lines T'y:y = vy (x) and T':y = y (x) have the following properties:
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koo << y(z) — yolz) < ko,
bo@l<t (@<, (103)
o | @I<v, | @<y, :

where T, v; ¥ > 7% are arbitrarily small. Letting £ = f(z) (f(% ©) = +w) denote a function which realizes the
conformal mapping of the domain D (T'y, D) onto the strip 0 < 7 < ¢ and assuming for points of I': V(s) =
£ "z)|, we obtain

[V (514 As) —V (s,)) <kvAslogA;ls - k% As, (104)

where ds is an element of arc of T' and s; corresponds to the point z;.

Proof. Performing a 1/6-fold similar expansion of the planes z and &, it can be seen that it is suffi-
cient to examine the case when ¢ =1, Noting this, let us draw an arc of the contour orthogonal to T' and T
and located in the domain D, through the point s;. Let us draw tangents L and L, respectively, to I'y and T.
through the ends of this arc. In conformity with the condition of the lemma, the angle between the lines L
and L does not exceed 27, Let us map the dihedral LyL conformally onto the unit strip 0 <7 < 1 such that
the vertices of the angles would go over into the points e : w = @ (z) (€1%)/7) log(z—ty), where t, is the ver-
tex of the angle LLyL; the distance between the point z; and s w111 be 1/27. The segments of the curves T
and T which are in the strip |x—x;] = 1/47, z; = x; + iy go over into the lines Tj and I'" under the mapping
@, where these lines will also satisfy the relationship (103) (¢ = 1) for some other constants 7 and ¥ by
virtue of the condition ¥ = 72, Moreover, the lines T'j and I'* will go into the lines y = 0, y = 1, respectively,
at the points (1/7g) log |zy—z,|, (1/79) log |zy—zy| + i. Let Ty:y =7y, (x) and T :y = ¥ (x) denote lines which
comc1de with T§, T'" at [x—x;] < 1/47 and satisfy condition (103) in the same sense as the lines T'y, T'". Let
= ¥(z) map the domain D (T, T) into D (T, T') under the condition of correspondence of the points z;, w; =
1/70) log |zy—z¢| + i and the lines Ty, Ty and ¢ = f'(@) maps the domain D (I‘O, T') onto the strip0<n <1,
fi(Fw) =%,

Hence, setting Vy = |f4], v = |@'], we obtain

HD=1,1%(2)],
V() =i @)y (@) =V, —v.

This means
[V(s+As) — V()] < k|Vy(s4-As) — Vy(s)|+F [pls+As) — v(s)].
For the second member, for |As| < 1/87
s As) — vls)) <kTAs.

By virtue of Theorem 10, for the first member we obtain

[Vy(s 4 As) — V, (s)| < kvAslog Als’

for bounded values of As, |As| < 1, and after an elementary estimation of this same expression we obtain
the estimate ktAs + kv for As > 1/2, Combining the inequalities obtained, we arrive at the desired rela-
tionship (104).

Let us return to the notation used at the beginning of this section and let us prove the lemma.

LEMMA 16. Let us assume that the functions y,(x) and y; (x) also satisfy the following conditions:

lyo (z)] < k132, o (2)] < kR2,
vy (@) << B2, s (2)] << B2

Moreover, let us have
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‘Pl . Pul <k, {105)
along the line Ty, and let the lines I’y contain the arc ¥ which has a differentiable curvature.
Under these conditions, if we have
Pi(s)) = kPy(s)) ~ Q, k>0, (1086)
at a certain point of the arc, then !PB(SO)‘ < kh'i/ ? at this point.
Proof. Letus assume the opposite, i.e., that |Pg(sy)] > Kh™Y/2 or for definiteness

Po(s) > KR, (106")

where K is arbitrarily large; in this case (106) will be equivalent to the condition
Py (s5) = kPo (s)- (107)

By virtue of condition (106), there is a bounded number 6 such that

I7il = o7,

at the point sy. Hence, replacing the function f by the function 6f, at the point sy we have
PP 109

Since PB hence does not vary, then without restricting the generality the condition (105) can be replaced by
the condition (108) under the conditions of the lemma. Moreover, considering P, and Py as functions of

£ ,m, by virtue of the boundedness of |f;| and|fi{| the differentiation with respect to s in condition (107) and
the desired inequality ean be replaced by differentiation with respect to £. Noting this, let us henceforth
consjder that the point ioh® corresponds to the point s, in the mappings f, and f1.

Let us assume

13

$(®) = [emPrai, - (8) = [e-rutam .
0

Py

By virtue of Lemma 15 we have

4 v
@ —s— @<L r (g1 ™), s>, (109)

Now, let us represent the values of dPy/d¢ and dPy/dé in terms of the functions Q) and @ at the point;
we will have

co

0Py 00y _ g i@t 200) —0i(n ek, o ¢ Q. (§, ah3)—01<0 b)) ge
9~ o | ah? T2 op
o sh 75‘3
@ B
9Py _ Qq _ |Qa (¢, 0) — @y (x. ah%* w1 Go(E, @) — Q0 (0, #h8) .
T kmaxl ahd o whs j e dg.
—m sh 5 s

The first member in the expressions obtained for 8P;/8 and 8P /5 is less than kh™1/2 by virtue of the
conditions of the lemma. In conformity with the assumption (106'), the sum of the remaining members
should be greater than Kh™Y/2, TLet us show that this sum is small together with h, Indeed by introducing
the variables s and s~ the considered sum can be represented as
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[Qo(0, OC}"8)—01(0 aha): Qo(s)=01(5) H

L Qlst(®l~0ls (g]l 1@ st — 5] gk
2 o?hE j‘ % E t< 2a2h6 T

sh2—2 PYE 2_._
7 a

where Q (s) denotes the angle formed by the tangent to T'y at the point s and the x axis. Remarking that
[Q'_| < kh? and substituting its majorant from (109) in place of |st—s~|, we obtain that this last expression
is small together with h. The lemma is thereby proved completely.

LEMMA 17. Under the conditions of the preceding lemma, let us assume that the curvature K(s) of
the line T'y does not exceed ¥y and the line T'y contains an arc ¥ of the contour of radius 1/v;.

Under these conditions there is an N = N (k) such that when
v, =vo+rok?®, r > N,

where v is the maximum of the curvature of the line Ty, we will have

+l

at any point sy of the arc 7 if the arc ¥ is concave relative to Dy, y{' < 0, and

op,
ds

ds

Py(s9) — Pols) < — 7+ s Bl (2] (ori e,

aP,

as

1

+l%J

9Py _ Py
ds ds

Pi(s0) = Po(s>7 — |

NEIAS
e

if the arc ¥ is convex relative to Dy, y{ > 0.

Proof, Let us consider the first part of the lemma. Let us assume that the point under consideration
sy goes over into the point ich® in the mappings & = fo(z), & = f4(z). Let Q) (£, ) and Q'(£, ) denote the
values of the derivatives of the functions Q) and Q; with respect to £. Let us find expressions for 8P ,/8¢2
and 8*P;/9£? at the point ich® in terms of the functions Qp and Q], respectively. Noting that for 7 = 0, ah?

Qo = Ke™Ps, (110)

taking into account Lemma 15 and the inequality obtained,*

|Po(E, ahS) — Pocg 0)] < vy < ks (111
_4Q _
7 =Ke %,

we have

d§

’ o ’ ’
2P, 90y, v —w, T 1 S Qq (€, ah?) — Qy (0, ah?)
ST a?h? -
S0

or, considering the curvature K of the line I'; as a function of £ and using (110), we obtain

ézp B 7 1 * [K (E) _K (0)] e-—Pn * Qz) (O’ aha) [ePo(E) —_ e—Pu(O)]
A ] B vy 5 R T & (1z)
. P 3 e s e

Let us estimate the third member. To this end, let us consider that

' 4P Py (0, ah3) — Py (0,0
Qo (0, ah?) = —o = O(u;hs R

t 3‘0 P, (& )—P.;(m .

a?hG

LT Po(80) =Py (0.0) g

=B
) eh2n§+l\

azh‘*
e —2' ah3 —oo

*To obtain this inequality it is sufficient to use the relation dP/dn = dQ/dt = Ke™F,
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Hence, taking account of (112) and Lemma 14, we obtain

oy
o

1 Py(5)—Py(0)
22hE S —O—hT't——'go—_ <
—20 _ ahs

Moreover, again by virtue of Lemma 14

S [po(s)—Po(O)] dg

shz T

n o
B2 S g d é&) < KPS
sh? _>_

—co o

Therefore,
0 0,ah®) T o—Pe®) _ oPul® k Lo
~a <hz'n_'—§ B<g B
R —CD a 3
Hence (112) yields
Py 1 T (Ke(®) — K, (0)] e—Pe®
d§’ =T+ 5 2 o 5‘ [ 0(§)5h2 ::( )§]e dE- (113)

—co 2 okl

Performing a completely analogous calculation for 8*P;/8 (£)? at the very same point 0, ah®, we obtain

o n t PRO-KO g
982 2 h%. shz & E : (114)
O . 2 hl

Let us note that the integrand in (113) and (114) is not negative because the eurvature of the line I'y reaches
its maximum on the arc ¥ by assumption; moreover, r is large compared to k

Now, let us turn from the derivatives with respect to £ to the derivatives with respect to s; we

evidently have

62Po 62}70 zp, 4+ (6Po) p. — 9P, 2p. + (6P,) —p,
?

ot T GE 52 ©
B’Pl 92Py op, | (0P, P, 9Py o2P1 P, —P
B Pt T (?’?‘E‘) el =gme ( ) E

Henece, taking account of (113), (114), and (115), we obtain

Py %P, (62P1 02P,,) 2p, ; 92D (ezh_ezz’.) +

B T o o T ag a5
BT L
—r { aP, \ ‘a_%\ ‘ap1 9Py l + (aP, ) ( —P, e"'). (116)

The second part of the lemma is proved perfectly analogously.

LEMMA 18, In addition to the conditions of Lemma 17, let us assume that along Ty

[Py (s) — Py (s)) < (117)

I —.
og A
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Under these conditions, the function q(s) = Py(s)—P;(s) cannot reach its maximum on the arc?Y including
its endpoints if ¥ is convex to Dy, and cannot reach its minimum if ¥ is concave to Dy.

Proof. Let us again examine the first case when ¥ is convex to D. Let us assume that we have

at an arbitrary point sy of the arc ¥; however in this case in conformity with Lemma 15 we will have

OPi
s

<« kh"ilz’

apP, —1/2

In this case, the inequality (116) becomes

or taking (117) into account, finally,

Hence, these results directly show that the maximum cannot be achieved at any inner point of the arc 7.
Moreover, it hence follows that when the maximum is achieved at the left endpoint of the arc v, for in-
stance, s = sq, then either

lim
As—>+0

0(31+A3)—"I(Sl)<_kﬁ
As i 1’
0g -

or the right arbitrary function q will exist and will be negative at the point s;, where in this case the func-
tion q will be convex to the right of s;. According to Lemma 8 in [2], it can be shown in both cases that for
Ag< 0

lim ¢ (s; + A:: — q.(s51) <0,

i.e,, the maximum is not achieved at the point s;. The case of the right endpoint of the arc ¥ is considered
perfectly analogously.
12, EXISTENCE THEOREM

Using the auxiliary propositions proved above and applying a method analogous to the method devel-
oped in the problem of jet fluid flows, let us prove the existence of a solution of the problem formulated in
Sec. 6. Let us prove the existence of waves with any sufficiently long period and let us obtain the solitary
wave as a limit case.

THEOREM. For any sufficiently small h and sufficiently large w there is always a value of A for
which a solution y = y {x, w) will exist for the equation
J(0l) =If'(2, 90, D)F — C+Ay=0,.
C=3+9, A=--i6,
where v, is the line y = A(w), [A] < kh?'log(l/h). The function y = (x, &) will hence have the following prop-
erties:

1) y (x, w) is a periodic function with period 2w ;
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2) y (x, w) is symmetric relative to the y axis;

3) v (x, w) admits a single maximum at the point x = 0, y (0, ) =h + th, 1< 0 < 2 in the segment
w, @),

For w - the function y (x, @) also tends to a solution of (1), where the value y (x, «) which admits the
single maximum at the point x = 0 and has the asymptote y = A is

9(0,00)=h—-2h2,

1A (o) < 222,
log

h

Proof. We perform the proof by inductibn by going from large values of v to smaller values. In con-
formity with this, let us first prove the existence of the solution to this problem:

a) Construct a solution of the equations
Jo(Ty, ) =0, v=Kh?,
where IT'y:y =y, (x) = v+ 1{x) satisfies the conditions

Uo{—2)=Yo (),  Yo(z+20)=y,(), (118)
(@) < 3k, lyo @) <A™, oo (2)] < A2

Let us prove the existence of a solution of this problem for K= 10, where for this solution we will
have

Ih — y(2) < 2. (119)

Let us consider the family E of functions {y (x)} which satisfy the following conditions:

P — y(@) < 28, y(—2)=y(a), y(z+20)=y(z), (120)
W @<, lim [ LEEZASV O N gyt (o). (121)

Let us define the functional T (y) in this family:

7 (y) = max |7, Ty, T)f.
<o

)<

This functional is evidently continuous in E and the family E is compact. This means that a function y {x)
exists in E which yields the absolute minimum T in E. We must show that T (y;) = 0. Let us assume the op-

posite, i.e., that T (yy) > 0.

Hence, in order to arrive at a contradiection it is sufficient to show that y; (x) can be varied in E so
that the appropriate variation of T would be negative. To this end, let us note some properties of the function

¢@)=J,(Te, T),

where a line which maps the function y = y (x) is taken as Iy.
1) At any point x where y; (x) = h + 2h?, @ (x) < 0 but where y; (x) = h—2h?, ¢ (x) > 0.

Indeed, by virtue of Theorem 1 (f2], p. 398), let us magnify J (T, T'y) in the first case if we replace I'y
by the line y = h + 2h? and Ty by the liney = v + 8h?, i.e., we have at the considered point

. h__.k T e . Y
qj::]z,(ro-rl)<(m) -—-C—,*/.(}Z—%—Qh‘)<0.

The second case is considered completely analogously.
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2) At points where |¢ (x)| achieves an absolute extremum, |y;(x)] < 1. This property results directly
from the analysis performed in proving Lemma 3. Starting from calculations performed in proving Lemma
4 and using the results of Secs. 8 and 9 of this paper, it can be seen perfectly analogously that

3) If the curve I’y contains an arc of the contour of unit radius, then the function ¢ cannot achieve its
absolute maximum or minimum on this arc, including its endpoints, depending on whether yl" <0 or yi" >0
along this arc.

4) Let € be an arbitrary small positive number and let the line I'y:y =y, (x) be such that
To(2) —wul(@)| <e
and at some point x;
—.lll(xo)Zyl(-zo)'f'S, @1(10)=1/1(xb) — el
It is asserted that under these conditions we have at the point %,
T Lo Ty) <<y (T, Ty) (Jol Ty, T) = Jo(T, TYy).

Indeed, by virtue of the Theorem 1 {2] mentioned, it is sufficient to prove our assertion for the case when
y1(x) =y (%) + €ly; (X) = yy (x)—¢€] for any x; however, in this case

= 2
Jo(Toy T3y — T (T, Ty) = (1 + 0h) ;22 — 28 e,

where |6] < 8. On the other hand, substituting its least value in place of v, we finally obtain

To(CyiTy) — Jo Ty, T)) > ke, k> 0. (122)

Analogusly, if 5_71 (X) = yy (x)—¢€, then
TolTo, Ty) — Jo(To,Ty) < — ke. (1221

Taking account of the properties listed for the line Ty, as well as the evident continuity of the function
¢, we can apply the construction given in Sec. 10 [2] of the theory of jets, and we can obtain 2 line Iy in the
class E for which T takes on a smaller value than on T'j. The existence of the solution of the problem posed
for k = 10 is thereby established. It follows directly from (122) and (122" that the solution of the problem
posed is unique and depends continuously on y, (x).

b) Now, let us show that under the conditions a) there is a constant A =A {y,}, |A| < h? for sufficiently
small h such that the solution of the equation

Jo(To, T} =0, (123)

where T'g:y = yy (x) + A, will pass through the point (0, h + @), 0 < 2 = 2h?, Indeed, turning successively
to ¢122) and (122) and assuming A = # (2/k)h?, we obtain the solutions of (123), one of which corresponds to
the plus sign and will be greater than h + 2h? for x = 0; the other will correspond to the minus sign, and
hence x will be less than h. We hence obtain the desired result from the continuity of the solution relative
to yy (x).

c) Let us turn to realization of the induction. LetY = S{yo, v} denote an integral of (11) (for n =
vo (x)—v + C with period 2w) which satisfies the initial conditions '

Y(0)=h-+a, ¥'(0)=0.

By virtue of Lemma 1, if y, (x) satisfies condition (118), a number k; exists such that for a sufficiently small
variation of y; in comparison to h® we have
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\ k
\S (¥ -+ 844, v} — S {yo, vi| < > max |y, (z)). (124)

By virtue of the preceding lemmas, under the very same assumptions there is a constant k sueh that
for the function y (x) = H{yo} we will have

[y (@) < kb2, v (2)] < kb (125)

If y, (x) satisfies the conditions of Lemma 13, there exist a 6, and k, such that

kgh?

ogT

bs{ye v} — H {gH < (126)

Now, let us note one special construction. Starting from y,(x) which satisfies (118) let us construct
a function y, (x) such that S{y;, v + kh%} = 8{y,, v}, k = 1.

Let us assume that a function H{yl} y(x) and an appropriate funcﬁt_lg_t}al A{yi} can be constructed for
the function y; (x). Let Ty:y = yo(x) + A{y;} and Ty :y; (x) + Aly;}. For the domains Dq(Ty, T'y) and Dy(TyT),
T':y = y(x) let us construct the mappings f, and f introduced in Sec. 11. Starting from (126), it can be

shown that we will have

2koh

17 (127
log.;; )

lpl"‘Pol<

along the line TYy.

Now let y; (x) satisfy conditions (118) and (89) for v = v;, where v is so small that the result of Lem-
ma 11 holds for y (x):

I8H {ye)l <52 max |6y, (128)
Let us assume
r=h3/hky—Bh3,

and let n be the least integer greater than 10h%/r = 10/Bh. Letus separate the interval (0, 10h?) into n

equal parts, where Vi, Va;..., Vp-y are the points dividing v, = 10h%, m/n = mry. Let Y(M)(x) denote a fune-
tion such that S{ 5 vm} Y (x), where y = Y (x) is the Rayleigh wave equation. Let us construct some
neighborhood for each line I‘m 1y = Ym (x).

Setting 6y = 0, we denote the numbers &, &;,..., 0} from the auxiliary relation

h‘ (129)
B = S (1 + 2eyf) + = i
It hence follows that
PP LI (130)
log_;_

where k, is a number defined by the numbers B, ky and ky. Let us henceforth consider k so small that &,
would satisfy the inequality 6., < 8.

In addition to the numbers 6, let us still introduce the numbers 6}n and &, m- Letussetd, :
ksh™?m, where ks is a number defined in terms of k; by using the function K, (k) introduced in Lemma 14:

k=B ofky)-
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Similarly
6:71 = k(i} L::m

where the number k; is also expressed in térms of k; by using the function K (k) from Lemma 17,

Let Ei, denote the set of lines {'ygm)}: {y= vo (X, m} which have the properties

var g, (¢, m) — Y§™ (2)] < 6 < 8,,, (131)
Yo(—=, m)=y,(z, m), yo(zﬁ v2va))=y0(x, m);
loo (2, m)| < 6, (132)
lyﬁ (‘tv m)l < 6:,-, H
moreover, especially for the line y, (x, n),
¥ (2, n) — Y (2)] < w2, (133)

. Let us establish the existence of the solutionH{yo (x, m)}, by induction from m to m—1, such that the
line N = v, will go over into a line of the family E, for the mapping f (M) of the strip vy <7 <h into the
domain D ('Y(m)), H{yo (x, m)} >y > y,(x, m). By virtue of a), this assertion holds for m = n. Let us as-
sume it to be valid for m and let us prove it for m—1.

Let yy (x, m—1) be an arbitrary line of the family Ep,_y. By virtue of (131), (124), and Lemma 1, we
will have

ko
s {yo’ vm-—l} - Y(‘rv a) < 2 ;zn_i- (134)

Let us determine y, (x) from the condition

s{yy, Um}=3[y01vm——1}-

It can be seen that
var |y, — Y ()< (1 4 2KkoBh) var |y, (z, m — 1) — Y3~ (2. (135)

This means that the function y; (x) belongs to the family E,,, where by virtue of (126) we have

sl vml — H (g}l < —]‘—h—i (136)

og —

It is hence assumed that H{yi} existe and the line f im) corresponds to some line of the family E,, for the
i (m)
mapping f i

Now, lety = 370 (x) =yg(x, m~1)+ C,C = const be a fun(_:_tion such that for 17 = grg (_)_()“'Vm_1 and for v =
vm-1 the integral of (11) agrees with s{y,(x, m—1)} andy = ¥4 () is such that for 7 =y (x)— 0, and for
V=V, the integral of (11) agrees with s{ye (x, m—1)} also.

Let us perform the conformal mapping ¢ = fo (z), &£ = f—'1 (z) of the strips y,(x) <y <y (x) and y; (x) <
y < H{y,} respectively, onto the strips vyy_; <7 < viy and vm <7 < h, By virtue of (136), (127) we will have

2koh
\P, — Py| < -1 (137)

log v

along the line y =y, (x).
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_ Noting this, let us construct a family of lines F ={ 1"1} :{y = y(x)} in the neighborhood of the line y =
¥y (x}, with the following properties:

Feoht
1 b

log-

by (@) — g, (<

y—o)=y(x), ylz-+20)=y(z),
W (@EN< 8 W (@) < S

All the lines of the family F belong to the family Ey,, which means that for each line from F there exists
an H{y} and A{y}. Let us extract a part F' out of F which is defined by the inequality

‘ - h
1A fy) —A < L2 (138)

1037
Let & = fy(z), &= fy(z) realize the conformal mapping of the domains yy(x) + A{y} <y <y x) +

A{y} and y{x} + A{y} <y < H{y}, respectively, onto the strips vip—y <1 < viy and vy <7 < h under the
condition of correspondence of the infinitely remote points. Let us introduce the function

$(s,Ty) = P, — P, = log|fi(2) — log |fo ()}

on each line I'y:y = y (x) F' by using these mappings and let us set
J(I') = max ¢ (s, T).
|sf<<ec

There remains to show that there exists a line T in the class of lines F' for which J(T') = 0, Let us
assume the opposite, i.e., that the minimum of J in F' is positive,

inf J(T')y=¢ > 0.

By virtue of the compactness of F' this minimum is reached on some line T of this same family,

J([©)=q.

Moreover, the liné y =y, (x) belongs to F! by virtue of (137),

2k.k
a2
logT

It must be shown that I‘(O) in the class F' can be varied so that 6J(I‘(°)) < 0, To do this, let us note
the following properties of the line T() and the function ¥ (x) = #(x, T®): 1) by virtue of (128) and the
choice of T at points where 8y will reach the absolute maximum (6y > 0) and minimum (dy < 0), we will
have 8% > 0 (6% < 0); 2) if

- - 2k bt
var |y () — 7 (2)] < =22,

log—~

then at points where y (x)—gﬁ (x) wili reach the maximum (minimum), we will have ¥ < a ( > a); 3) analo~
gous inequalities hold if the inequality (138) will become an equality at appropriate points; 4) by virtue of
Lemmas 16 and 18 the function ¥ cannot reach the absolute minimum (maximum) at points where y' =

8 (v' == 06p,) and on ares of the greatest convexity

23372 '1)3/ 2

y=8nt -y WLy =8ty
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However, the four properties listed for the line T(® are sufficient for application of the variation oT(0)
given in the paper about jets ([2], pp. 431-436) to the construction.

The formulated theorem is thereby proved completely.

13. SUMMARY

1. As is known, the problem of plane steady motion of an ideal gravity fluid in a channel of finite depth
is equivalent to the following boundary-value problem from conformal mapping theory:

Let D(I') be a domain in the plane of the complex variable z = x + iy bounded by the real axis x and the
curve I':y = y (x), y (x) > 0, Furthermore, let w = f(z, I'), f(2w, T') = £ «» be a function performing the
conformal mapping of the domain D (T) onto the strip 0 < v <h of the w = u + iv plane. For given constants
C, X and h, find T" such that the relationship

IT)=f'(z, T)*— C+ry=0, € >0, A>>0 (1)

would hold at each point of T'.

If it is assumed in addition that the desired function y (x) differs slightly from a constant, and its
derivatives are small and the boundary condition (1) is linearized in conformity with this, then the problem
posed will admit of elementary solution, and the desired function will be a sinusoid with arbitrary ampli-
tudes and phase and with period governed by the given constants.

A number of investigations have appeared in the past 20 years, in which a rigorous solution of the
problem has been given by using integral equations, for cases slightly different from the linear case.

In addition, Rayleigh gave an approximate method for the case of waves in channels of low depth by
taking account of the quadratic term. The Rayleigh theory afforded the possibility of examining waves,
radically different from sinusoids; in particular, the Rayleigh theory gave the solution of the problem in the
form of a line with a single maximum point (a solitary wave).

A number of propositions referring to the rigorous theory of almost Rayleigh waves is established in
this paper. Underlying the method are general boundary properties of univalent functions which the author
had used earlier to construct a qualitative theory of jet fluid motions.

2. In conformity with the conditions for which the Rayleigh solution can be considered as an ap-
proximate solution, let us assume that the number h is sufficiently small and the numbers C and A have the
structure

A2t (B )k, € =3+ (9+ Pt

where o and B are sufficiently small quantities,

Henceforth, ky, ky, ..., will denote constants independent of h.

Under these conditions a general existence theorem holds.

THEOREM 1. For all values of w > kp/Tl, where k; is sufficiently large, there exists a curve I'w:y =
y (x, w) with period 2w

y(x+2m, (0):]/(17 m)

and with vertex at x = 0 which satisfies the functional equation (1).

The limit line T,y (x, @) exists as @ — = and yields an aperiodic solution of (1) with a single vertex
at the point x = 0, This limit solution is an identity wave.

3. The connection between the solution y (x, @) of Theorem 1 and the approximate solution Y (x, ),
Y (x + 2w, w) = Y (x, w) given by Rayleigh is established by the following propositions.

THEOREM 2. Under the conditions taken in Sec. 2, we have for the solution y(x, W)
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W (x, @) < kah®2,
[y (w0, 0) << ksh,

" (2 0)) < s

log—

h
THEOREM 3. Under the previous conditions, the estimate
Lih?

1
log -

Wz, 0)— Y (1, @) <

holds.

4. The following stability for the solution is essential to an algorithmic construction of the solution

y (%, w).
THEOREM 4. If the line ¥:y = ¢(x)

w(r+ 20)=0(z), ¢(0)=y(0,0)

with vertex at the point x = 0 deflects from the solution ' :y = y (X, @) by more than €, € > 0

sup|p(z) — y(z, o) > &,
then |1(7)| > ket
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